

Monte-Carlo event generation for CEPC

Xin Mo (IHEP)

May. 5, 2015

Introduction

- Whizard 1.95 & 2.2.x
- SM & BSM
- Other generators

Production of event for Standard Model

- Signal
- Background
- Other issues
 - ISR & beam
 - Cuts

Introduction of CEPC

Circular electron-positron collider for next generation Period: 10 years Luminosity: 5 ab⁻¹

Compared with LHC

Compared with ILC

Tips for generation

Mass production

Signal part

Background part

• 2 fermions

• 4 fermions

Signal Part

Higgs-strahlung 10^{2} Color - Process e⁺e⁻→ZH W fusion 10¹ Z fusion e^+ Ζ σ[fb] 10-1 Ζ Η e 160 180 200 220 240 260 280 Vector boson fusion \sqrt{s} [GeV]

300

Final state with two fermions

- $\triangleright e^+e^- \rightarrow ff$
- \succ Z pole physics
- Calibrating the detector

Classification of 4 fermions

Single W type

➢ Single Z type

	$u\overline{d}$	$c\overline{s}$	$\bar{e}\nu_e$	$\bar{\mu}\nu_{\mu}$	$\bar{\tau}\nu_{\tau}$
$d\overline{u}$	43	11	20	10	10
$s\bar{c}$	11	44	20	10	10
$e\overline{\nu}_e$	20	20	56	18	18
$\mu \overline{\nu}_{\mu}$	10	10	18	19	9
$\tau \bar{\nu}_{\tau}$	10	10	18	9	20

Topological structure

Summary table

Cross sections [fb]

	240GeV	250GeV
qq	54662	50216
$\mu^+\mu^-$	4685	4405
single Z	4538	4734
single W	5086	5144
W^+W^-	16004	15484
ZZ	1079	1033
ZH	203	212
W fusion	5.36	6.72
Z fusion	0.50	0.63

Number of events

Process	Cross section	Nevents in 5 ab ⁻¹	
Higgs boson production, cross section in fb			
$e^+e^- \rightarrow ZH$	212	1.06×10^6	
$e^+e^- \rightarrow \nu \bar{\nu} H$	6.72	$3.36 imes 10^4$	
$e^+e^- \to e^+e^-H$	0.63	3.15×10^3	
Total	219	1.10×10^{6}	

Background processes, cross section in pb			
$e^+e^- \rightarrow e^+e^-$ (Bhabha)	25.1	$1.3 imes 10^8$	
$e^+e^- \rightarrow qq$	50.2	$2.5 imes 10^8$	
$e^+e^- \rightarrow \mu\mu \text{ (or } \tau\tau)$	4.40	$2.2 imes 10^7$	
$e^+e^- \rightarrow WW$	15.4	$7.7 imes 10^7$	
$e^+e^- \rightarrow ZZ$	1.03	$5.2 imes 10^6$	
$e^+e^- \rightarrow eeZ$	4.73	$2.4 imes 10^7$	
$e^+e^- \rightarrow e\nu W$	5.14	2.6×10^7	

CFHEP

Exotic decay

> SLHA interface

read_slha (<filename>)

Useful for supersymmetric models: read a parameter in the SUSY Les Houches Accord format.

Les Houches Accord format

Defines parameter values and, optionally, decay widths

Default cuts

default cuts applied on the invariant mass of colored or charged particle pairs, on the energy of emitted photons or gluons, and on the momentum transfer to exchanged photons or gluons.

≻ Whizard version 1

```
! Automatically generated set of cuts
! Process bhabha:
     e a-e ->
                e a-e gamma
    16
         8 ->
                    2
                1
                          4
process bhabha
cut M of
            3
                   within 1.00000E+01
                                         1.00000E+99
                   within 1.00000E+01
cut M of
            5
                                         1.00000E+99
cut M of
            6
                   within 1.00000E+01 1.00000E+99
cut M of
           17
                   within -1.00000E+99 -1.00000E+01
           20
cut M of
                   within -1.00000E+99 -1.00000E+01
cut M of
           10
                   within -1.00000E+99 -1.00000E+01
cut M of
                   within -1.00000E+99 -1.00000E+01
           12
```

Whizard version 2

```
real default_M_cut = 10 GeV
real default_E_cut = 10 GeV
real default_Q_cut = 10 GeV
alias visible = colored:charged
```

```
cuts =
   all M > default_M_cut [visible, visible]
   and
   all E > default_E_cut [visible]
   and
   all M < - default Q cut [incoming particle, visible]</pre>
```

```
Workshop on Monti-Carlo for CEPC
CFHEP
```


Comparison among different version

# Define	the pred	cess
process	e2e2h	= e1,E1 => e2, E2, h
process	mumu	= e1,E1 => e2, E2
process	sw_10mu	= e1,E1 => n2:n3:N2:N3, e2:E2 , e1:E1, n1:N1
process	ffh	<pre>= e1,E1 => (fermion, fermion, h)+(e2,E2,h)+(e3,E3,h)</pre>

Process	ISR(v2)	Err(v2)	ISR(v1)	Err(v1)
ffh	209.63	0.70	210.80	0.61
e2e2h	6.89	0.02	7.10	4.45E-03
sw_l0mu	422.85	1.21	429.20	0.52
mumu	3884.74	28.0	4967.58	23.9

The Bhabha process

- Leading background
- Measurements for luminosity

Cut	σ [fb]	Error [fb]
10GeV	2705545	O(10 ⁴)
5GeV	11062568	O(10 ⁴)
1GeV	276518660	O(10 ⁶)
0.5GeV	1077946300	O(10 ⁷)

Beamstrahlung

CFHEP

e⁺e⁻ Pairs

Interface of MadGraph+pythia to CEPC

- MadGraph+pythia showering output format is not directly readable by CEPC simulation inputs
- A temporary solution is investigated by convert file formats
- Convertors

- Standard alone packages/executables
- This could be generalized to convert other generators' output to be readable by CEPC simulation
 - As far as it can provide stdHep or HepMC format

The SM event generation
Higgs physics study

Improvements for BSM processes

Deeper study

- Bhabha process
- Cuts optimization
- Beamstrughlang effects

Thanks for attention!

Backup

Tips for generation

Initial and Final State:

- ♦ ISR and FSR
- Beamstrahlung: CIRCE2

Event Formats:

- Binary: STDHEP, HEPMC(version 2)
- ◆ ASCII: Les Houches Accord format, HEPEVT

Libs contained:

• Events generation: PYTHIA

Process e b $e^+e^- \rightarrow t\overline{q} \rightarrow bW^+\overline{q} \rightarrow bl^+\nu_l\overline{q}$ W⁺ Z/Y FeynRules & u,c Madgraph/MadEvent $BR(t \rightarrow qZ)$ 95% C.L Excluded Region e 10-2 ATLAS (7 TeV W^+ 111 10-3 CMS (7+8 TeV Z/Y CMS (8 TeV) q=c 10-4 ATLAS, 14TeV, 300 fb⁻¹ 10-5 u,c C-ee/TLEP. 350 GeV. 100 fb 10-6 10-3 10-5 10-4 10-2 10-1 $BR(t \rightarrow q\gamma)$ Workshop on Monti-Carlo for CEPC

Top physics

CFHEP

➤ Whizard version 1 GuineaPig→lumilinker→user.f90

\succ Whizard version 2

- Circe2
- A internal CEPC spectral