WHIZARD for the CEPC Project

Wolfgang Kilian

U Siegen

Monte Carlo for CEPC, May 2015

Monte Carlo for CEPC

The CEPC is a

symmetric e^+e^- collider

with planned c.m. energy

 $90 \dots 250 \text{ GeV}$

and

1/33

high luminosity

Many existing studies do apply, but

low beamstrahlung, some energy spread

⇒ differences w.r.t. both ILC and LEP

Challenges for simulation: LEP

- ▶ 90 GeV: LEP 1 / SLC 2 fermions, tree + 1 loop
- ► 170 GeV: LEP 2 4 fermions, tree + 1 loop reson.

Challenges for simulation: LEP \Rightarrow CEPC / ILC

- ▶ 90 GeV: LEP 1 / SLC \Rightarrow CEPC 2 fermions, tree $+ 1 \log + 2 \log +$ + 4 fermions, photons, jets ▶ 170 GeV: LFP 2 \Rightarrow CFPC
- - 4 fermions, tree + 1 loop reson. + 1 loop complete + 6 fermions, photons, jets
- ▶ 250 GeV: \Rightarrow CEPC / ILC
 - 4 fermions, tree + 1 loop complete
 - + 6 fermions, photons, jets

Challenges for simulation: LEP \Rightarrow CEPC / ILC

- ▶ 90 GeV: LEP 1 / SLC ⇒ CEPC
 2 fermions, tree + 1 loop + 2 loop
 + 4 fermions, photons, jets
 ▶ 170 GeV: LEP 2 ⇒ CEPC
 4 fermions, tree + 1 loop reson. + 1 loop complete
 + 6 fermions, photons, jets
 ▶ 250 GeV: ⇒ CEPC / ILC
 4 fermions, tree + 1 loop complete
- ► 360 GeV: ⇒ ILC

6 fermions, tree + Coulomb resummed + 1 loop complete

+ 8 fermions, photons, jets

+ 6 fermions, photons, jets

ISR Photon Radiation

LEP

ISR strongly affects the ${\cal Z}$ peak and the ${\cal WW}$ threshold via its energy loss

Inclusive treatment of ISR:

- Resummation of invisible soft photons (all orders, leading-log)
- ► Incorporate invisible collinear photons (fixed order)
- ⇒ effective structure function for electron/positron

CEPC

More precise calculation necessary, handle photons that are visible in the detector.

Semi-exclusive treatment of ISR desired:

- Resummation and collinear inclusion depending on detector geometry
- Allow for transverse momentum
- ► Match to fixed-order calculation

QCD (perturbative)

LEP

Jet production and radiation in clean environment \Rightarrow detailed jet studies, tuning of MC parameters

CEPC

- Matrix-element matching in clean environment
- ► Fine-tuning of MC parameters
- ▶ Refined α_s measurement
- \Rightarrow new level of pQCD understanding, new input for LHC analyses and future hadron colliders

Flavour

Lepton collider detectors can identify charm quark via lifetime measurement

 \Rightarrow new level of tests of flavour universality (gauge bosons) and non-universality (Higgs)

WHIZARD

WHIZARD is a universal MC for high-energy processes, originally developed for post-LEP lepton-collider physics. (First version 1999)

Currently: collaboration

- University of Siegen: Wolfgang Kilian
- DESY (Hamburg): Jürgen Reuter
- University of Würzburg: Thorsten Ohl

Dedicated Workshop "2nd WHIZARD Forum" in Würzburg, March 2015

WHIZARD: Software management

Code: hepforge (Durham, UK)

https://whizard.hepforge.org

Versioning: SVN version management. Current: 2.2.6

Bug tracker: on hepforge.org

E-mail: whizard@desy.de
Platforms: Linux and MacOS

Configuration: GNU autotools, separate installation and workspace

configure && make

Test suite: Included in the part of package: 100s of automatic unit tests

make check

Automatic checking each commit (Jenkins / U Siegen)

WHIZARD: Code Characteristics

- Code in modern Fortran (Fortran 2008), compatible with free gfortran compiler
- OpenMP for multi-core parallelization
- Modular and object-oriented, heavily relying on abstract design patterns for exchangeable implementations
- Code documentation via noweb (entangled code/doc)
- ▶ Includes interfaces and C/C++ glue code for third-party packages
- User interface via
 - + Script as input file (Sindarin)
 - + Command-line parameters and commands
 - + Library calls from Fortran/C/C++/Python main program
 - + Interactive (WHIZARD shell)
 - GUI: not yet

WHIZARD for ILC (and CEPC): Current status

Universal Monte Carlo, multi-particle matrix elements, SM and beyond

DBD event samples for LC studies:

generic event samples with 4, 6, (8) fermions, WHIZARD 1.xx

New generation for ILC planning phase: WHIZARD 2.xx

Prebuilt Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	_	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with anomalous top couplings	SMtop_CKM	SMtop
SM with WW resonances and unitarization	_	SSC
2HDM	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	_	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	_	PS/E/SSM
Littlest Higgs	_	Littlest
Littlest Higgs with ungauged $U(1)$	_	Littlest_Eta
Littlest Higgs with T parity	_	Littlest_Tpar
Simplest Little Higgs (anomaly-free)	_	Simplest
Simplest Little Higgs (universal)	_	Simplest_univ
3-site model	_	Threeshl
UED	_	UED
SM with Z'	_	Zprime
SM with gravitino and photino	_	GravTest
Augmentable SM template	—	Template

More Models

new models easily: FeynRules interface Christensen/Duhr/Fuks/Reuter/Speckner, arXiv:1010.3251 Interface to SARAH in the SUSY Toolbox Staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147

$$e^+e^- o b\bar{b}$$

ILC: $500~{
m GeV}$, beamstrahlung \otimes ISR, no cuts, $100{
m k}$ events: $M(bar{b})$

SINDARIN: Talking to WHIZARD

Example:

```
process foo = e1, E1 => n1, N1, H simulate (foo) { sqrts = 500 GeV n_events = 10000 }
```

Scope

- ► Set model, parameters, user variables
- Conditionals and loops, arbitrary workflow
- Multiple processes and process combinations, flavor sums
- Automatic width calculation
- ▶ Beams: chain of spectra and structure functions, polarization
- ▶ Integration and simulation, shower and hadronization parameters
- ► Arbitrary expressions for cuts, scale, weight, etc.
- ▶ Event sample output: raw, ASCII, LHE, HepMC, StdHEP, . . .
- ▶ Event sample reweighting, output multiple weights
- ► Internal analysis: histograms and plots

Beam structure

WHIZARD supports e^+e^- beams with structure [Würzburg: Thorsten Ohl] (also polarized, asymmetric, non-collinear)

Beam structure options

- No structure
- 2. Parameterized beamstrahlung spectrum: Circe 1
- 3. Use GuineaPig/Cain output directly: beam events
- 4. Generator for Gaussian beam-energy spread (TBD)
- 5. Beam-event generator derived from beam simulation: Circe 2
 - \Rightarrow Use dedicated simulation for CEPC parameters

basic example of CIRCE2 input

15/33

```
{ file = "TDR.circe"
                       # name of the output file
  { design = "ILC"
                        # there can be more than one design per file
    roots = 500
                                                     energy
     scale = 250 # map [0, 250] \rightarrow [0, 1]
    bins = 100
                       # use 100 bins in each direction
    { pid/1 = electron # first and second particle
      pid/2 = positron
      pol = 0
                        # both particles unpolarized
      events = "guinea_pig/out/ILC_500_unpolarized.data"
      columns = 2
                        # read only the first two columns
      lumi = 8.008e33
      min = 0
                       # allow 5% energy spread at the upper end
      max = 1.05
} } }
```

• iterations = 0 and smooth = 0, 3, 5:

16/33

• iterations = 2 and smooth = 0, 3, 5:

 \blacktriangleright iterations = 4 and smooth = 0, 3, 5:

Use from within WHIZARD (part of Sindarin script):

```
sqrts = 500
beams = "e-", "e+" => circe2
$circe2_file = "TDR.circe"
$circe2_design = "ILC"
?circe2_polarized = false
```

Hard Matrix elements

OMega

- Automatic calculation of amplitudes at tree level
- ▶ SM, SUSY models, non-SUSY models, non-perturbative models, etc.
- ▶ Algebraic reduction to DAG = generalization of Berends-Giele recursion with caching, result is Fortran code
- Helicity exact in discrete basis.
- Color via color-flow version of QCD, no leading-color approx.
- Flavour exact or diagonal
- Vary gauge-scheme for unstable W/Z

Final state

WHIZARD produces partonic events in various formats, including color correlations

- supported: Stdhep, LCIO, LHEF, HepMC, various ASCII formats
- \Rightarrow shower/hadron generator can operate on event files, e.g. PYTHIA 8

Particle decays, if not already included in hard ME:

factorized with various options on polarization handling

Internal parton shower: two alternatives

- 1. Shower generator PYTHIA 6 internally interfaced
 - 2. WHIZARD analytic-shower generator
- + MLM matching
- + Polarized particles (tau) possible

Projects for WHIZARD

WHIZARD is dedicated to lepton-collider MC simulation

- \Rightarrow Identify important issues for upcoming decade of ILC/CEPC studies, to become ready for data taking
- ⇒ Opportunity and need for collaboration projects

Initial state

Exclusive handling of multiple ISR photons, for arbitrary hard processes in combination with soft resummation.

Currently: available in dedicated KK Monte Carlo (only specific 2-fermion processes)

Project for WHIZARD: universal semi-exclusive ISR

- ⇒ CEPC
- \Rightarrow ILC
- ⇒ CLIC

Hard matrix elements

Automatic NLO calculation and event generation: DESY team (Jürgen Reuter, Bijan Chokoufe, Christian Weiss)

(Employ modular structure of WHIZARD for exchangeable algorithms)

QCD

- Virtual matrix elements with GoSam, OpenLoops, . . .
- Real radiation with OMega, GoSam, . . .
- ▶ Subtraction scheme: FKS, ...

First results available for e^+e^- processes. Validating and generalizing the program structure.

SM

- Virtual matrix elements with Recola, OpenLoops, (TBC)
- ► Complex Mass scheme

Further plans: versatile subtraction scheme \Rightarrow 2-loop virtual ME

Matching/merging

Combining hard ME and parton shower

- ▶ MLM scheme: implemented
- PowHEG scheme for incorporating NLO virtual and real ME correction: work in progress
- ⇒ exclusive NLO events

$$e^+e^- \to q\bar{q}$$

The NLO QCD result should be a constant K factor.

1

Total cross section for the process $e^+e^- \to u\bar{u}$

$$e^+e^- \to q\bar{q}$$

 $q\bar{q}$ initiate a parton shower: NLO + POWHEG matching + PYTHIA 8

NLO/matching/merging

Further plans:

- ▶ working toolchain ⇒ universal applicability
- alternative matrix-element providers
- alternative matching schemes
- more sophisticated shower algorithms (VINCIA)
- Pythia 8 and Herwig interfaces
- Photon shower/resummation in final state

Top pair threshold

(ILC exclusive, unless CEPC gets $180 \; \mathrm{GeV}$ beams)

Many independent theory methods and results

- ► Tree-level beyond factorization production/decay (OMega)
- ► Coulomb resummation near threshold (Toppik)
- NRQCD evaluation of production amplitude (Toppik)
- ▶ NLO QCD corrections in the continuum (GoSam)

WHIZARD: combine all of those.

[Fabian Bach, Bijan Chokoufe, Christian Weiss]

Fixed Order NLO (Continuum)

$$e^+e^- \rightarrow b\bar{b}W^+W^-$$

Resummed NLL $t\bar{t}$ threshold + continuum

Improving efficiency

Technical issues

- 1. implement MPI (Coarray) parallelization model, so single processes can be run on clusters/supercomputers
 - project to be started in 2015
- 2. replace generated Fortran matrix element code by virtual machine code

Thorsten Ohl, Bijan Chokoufe

- implemented, efficiency gain varies
- 3. export calculations to GPU (Xeon Phi), using virtual machine

Algorithm changes, for instance:

 replace discrete quantum numbers by continuous parameters, to be included in phase space integration

Phase space point

O'Mega

OVM interpreter

matrix element

Summary and Outlook

- ▶ WHIZARD is dedicated to lepton collider physics ⇒ CEPC
- ▶ Detailed description of e^+e^- beam properties
- Universal matrix-element generator with event generation and final-state transformations (decays, shower, hadrons)

Ongoing and future projects

- ▶ NLO (NNLO) for e^+e^- processes
- Parton shower and matching algorithms
- Exclusive photon radiation
- ► Alternative algorithms and methods for efficiency gains
- Specific CEPC phenomenology and studies