
WHIZARD -Tutorial

Beijing University

August 28, 2014

1 How to use this tutorial

WHIZARD is a program system designed for the efficient calculation of multi-particle scattering
cross sections and simulated event samples. The project web page can be reached via the URL

http://whizard.hepforge.org/

This tutorial will walk you through the basic usage of WHIZARD and take you to the point where
you can generate event samples which match those which you will be analyzing later. Before
you start working on the tutorial, take a little time to familiarize yourself with the virtual
machine environment.

Whenever you encounter a line starting with a dollar sign $, the remainder is a command
which you should run in the shell. Boxed frames filled with code are SINDARIN scripts (WHIZARDs
flavor of input files) which you should copy into your favorite editor and run through WHIZARD.
Typewrite-style paragraphs are sample WHIZARD output.

At several points, you will encounter sections labelled “Self-Study”. Those are suggestions
for modifications of the examples presented in this tutorial which you might want to try out
in order to get a deeper understanding of how the program works. Feel free try out your own
ideas as well. You can find a copy of the WHIZARD manual on the virtual machine in

Desktop/manual.pdf

and several examples in

/usr/local/share/whizard/examples

As WHIZARD produces a number of files during its run, you may want to use different directories
for different processes.

1

http://whizard.hepforge.org/

Remarks on Installation

The VM provides you with a complete environment, so for the purpose of this tutorial, you
don’t have to worry about program installation. However, for further studies, you may wish to
install WHIZARD yourself, outside the VM. You will find a detailed description of the options,
necessary steps and requirements in the manual.

At this place, we just list a few important issues: (i) WHIZARD can be installed centrally
on a machine, or in a user directory. In both cases, your work projects remain separate from
the installation. (ii) WHIZARD’s programming languages are modern Fortran and Objective

Caml. For both languages, there are free compilers that are available for all relevant platforms,
packaged for standard OS distributions. In particular, the free gfortran compiler will work if
you have at least version 4.7, preferably 4.8 or higher.1 (iii) WHIZARD can optionally make use of
external packages, which should be installed if you want their functionality. Notable examples
are LHAPDF, StdHEP, or HepMC.

As a shortcut, there is also the instant-whizard script which automatically downloads,
compiles, and installs are necessary software.

2 First steps

In this first part of the tutorial, you will learn how to invoke WHIZARD and get a short overview
over its input language SINDARIN. No physics in this section.

2.1 Invoking the program

After installation (it’s already installed in the VM), WHIZARD is available as a standalone pro-
gram which can be executed by calling the binary:

$ whizard

The program now starts, prints its banner and then waits for input on stdin. For now, we can
terminate the run by pressing ctrl-d in order to send an end-of-file. Of course, the usual way to
run WHIZARD is not to read from stdin but to supply an input file as an argument when calling
the program.

After WHIZARD has terminated, inspect the directory in which you ran the program. You
will find that it has left you a file called whizard.log. This file contains a copy of most of the
output also sent to stdout during the run.

2.2 Talking to the WHIZARD: SINDARIN and “Hello, World!”

WHIZARD expects input in its own scripting language called SINDARIN. Therefore, start out
by writing the SINDARIN flavor of the usual “Hello, World!” program. Create a file called
hello world.sin containing

1Note that there are Fortran compilers that don’t work with WHIZARD, yet.

2

printf "Hello, World"

and run it through WHIZARD via

$ whizard hello_world.sin

2.3 Variables

WHIZARD predefines many variables and also allows you to define your own. As with most
languages, SINDARINs variables come in different types. Among others, there are integer,
real, complex, string and logical variables, the last two of which are prefixed with $ and ?

respectively. In order to get a list of the predefined variables, augment your script by another
line such that it reads

printf "Hello, World"

show ()

and rerun it. show is the second WHIZARD command we encounter. Used without argument,
it prints a list of all defined variables, but variants such as show (model) or show (mW, mZ,

mtop) are possible. You can easily get a scrollable version of the same list via

$ echo ’show ()’ | whizard | less

(a nice trick if you are unsure how a variable is called or want to find out the defaults). Take
some time to inspect the result. Most variables act as options controlling the behavior of
WHIZARD commands, e.g. $restrictions or ?alpha s is fixed. Further down the list, you
will find variables of real type like GF and mZ which repesent parameters of the currently active
model and which you can modifiy in order to change the model values. Note that some of those
are marked by an asterisk *: this tells you that they are automatically calculated and cannot
be changed by assignment. At the bottom of the variable list you’ll find a long list of more
exotic definitions like

down* = PDG(1)

dbar* = PDG(-1)

Those are “PDG array” type variables which bind one or more PDG numbers to a name. They
are defined in the model files and are used to refer to particles when defining processes and
observables.

In order to see some of the things you can do with variables, try another SINDARIN script
(or augment your existing one)

3

real conv = 180 / pi

printf "Weinberg angle, default value [degrees]: %f" (asin (sw) * conv)

mW = 70 GeV

printf "Weinberg angle, new value [degrees]: %f" (asin (sw) * conv)

Note that the line breaks are not mandatory; SINDARIN’s syntax is not line based. You
won’t see characters for terminating or separating statements, either. Statements just follow
each other.

The output should look like

[user variable] conv = 5.729577951308E+01

Weinberg angle, default value [degrees]: 28.127416

SM.mW = 7.000000000000E+01

Weinberg angle, new value [degrees]: 39.857282

What happened?

1. We defined a new real variable called conv and assigned it the conversion factor from
radians to degrees. Evidently, WHIZARD has some predefined constants like pi. Note you
must explicitly declare the type when you use a new variable for the first time: integer,
real, complex, string or logical. Every assignment is reflected in the program output,
making it easy to find out what happened after the run.

2. We used printf to print the value of the Weinberg angle. The formats of the values are
defined in the message string, and the actual values are given as a comma separated list
in parenthesis. WHIZARD accepts most of the format specifiers also used in C and other
languages. We also used a function, asin, to get the value of the angle.

3. A new value was assigned to the W mass. Note that although their use is not mandatory,
WHIZARD supports and encourages the use of units where appropiate. You can find a list of
them in the manual; the default energy unit is GeV. The output SM.mW = ... confirms
that we indeed modified a model input parameter.

4. The next printf statement reflects the fact that the Weinberg angle is not a free quantity
but does depend on the W mass. The corresponding relation is defined in the model file.

Incidentally, the variable conv that we defined above is already available in form of a unit.
You may simplify the SINDARIN code above to

printf "Weinberg angle, default value [degrees]: %f" (asin (sw) / 1 degree)

mW = 70 GeV

printf "Weinberg angle, new value [degrees]: %f" (asin (sw) / 1 degree)

4

2.4 Other SINDARIN constructs

Although we will not cover them in this tutorial, SINDARIN has several additional constructs
common to programming languages:

• Loops. SINDARIN supports scanning over variables, a feature which can be exploited for
parameter scans.

• Conditionals. The usual if...then...else construct exists and can be used for code
blocks and in expressions. The latter can be very useful in defining observables for
histogramming (more later).

• sprintf. This works similarly to printf, but returns a string. Allows e.g. for automatic
generation of filenames for output in a loop.

All of these features are documented in the manual.

2.5 Self-Study

Play a bit around with variable assignments and expressions, and try to find out which functions
WHIZARD supports for use in expressions and how common operators look like and work. If you
like, look up loops and conditionals in the manual and try them out.

3 A first stab at physics: e+e → W+W

In this section we will use the trivial example of e+e → W+W to see how the basic function-
ality of a tree level Monte Carlo works in WHIZARD: process definition, integration and event
generation.

3.1 Process definition and integration

Create a SINDARIN script with the following content

! Define the process

process proc = "e+", "e-" => "W+", "W-"

! Compile the process into a process library

compile

! Set the process energy

sqrts = 500 GeV

! Integrate the process

integrate (proc)

5

(note the appearance of comments) and run it through WHIZARD. You will be greeted by a
lot of output. What happened?

3.1.1 Process definition and code generation

The first line process proc = ... defines our W pair production process and assigns the
name proc with which we will refer to it in the remainder of the script. Note the appearance
of quotation marks—those are needed to prevent WHIZARD from interpreting the + and - as
operators. However, most WHIZARD models define several aliases for each particle. Instead of
e+, e-, W+ and W- one could also use E1, e1, Wp and Wm. An exhaustive list of definitions can be
found in the model file

/usr/local/share/whizard/models/SM.mdl

Matrix elements for WHIZARD are generated automatically by a separate matrix element gen-
erator called O’MEGA. For every process, O’MEGA generates a piece of Fortran code which is
dynamically compiled and loaded by WHIZARD. The compile statement in the second line trig-
gers the code generation and the compilation into a process library, which is then loaded.2

3.1.2 Phase space parameterization and integration

The third statement in the script, sqrts = ..., sets the center of mass energy of the process
and is then followed by the final integrate statement, which takes the name(s) of the pro-
cess(es) to be integrated in parenthesis, separated by commata. The first interesting bit of
output from the integrate commend is

| Phase space: generating configuration ...

| Phase space: ... success.

| Phase space: writing configuration file ’proc_i1.phs’

| Phase space: 3 channels, 2 dimensions

For efficient integration of multileg cross sections, WHIZARD employs a multichannel Monte
Carlo integrator (VAMP). Each channel corresponds to a separate phase space parametrization,
automatically tailored to map out a class of singularities, combined with a Monte Carlo grid
and a weight. During adaption, grids and weights are iteratively optimized. What does the
above output signify? WHIZARD starts out looking for an existing phase space parameterization
for the process and, upon discovering that none exists, generates a new one. For our trivial
example, this step is instantaneous, but for more complicated (multijet) processes, it may take
a finite amount of time.

After the channels and grids have been set up, WHIZARD starts the adaption and integration
process. The output from this process reads

2 The explicit invocation of compile is not mandatory. If you omit it, the program will automatically generate
the matrix element upon integration or simulation.

6

| Starting integration for process ’proc’

| Integrate: iterations not specified, using default

| Integrator: 2 chains, 3 channels, 2 dimensions

| Integrator: Using VAMP channel equivalences

| Integrator: 1000 initial calls, 20 bins, stratified = T

| Integrator: VAMP

|===|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|===|

1 864 7.2138993E+03 5.97E+01 0.83 0.24* 26.15

2 776 7.2042129E+03 3.62E+01 0.50 0.14* 44.66

3 776 7.2335102E+03 4.02E+01 0.56 0.15 44.11

|---|

3 2416 7.2167572E+03 2.45E+01 0.34 0.17 44.11 0.15 3

|---|

4 9984 7.1964029E+03 4.65E+00 0.06 0.06* 45.49

5 9984 7.1954733E+03 4.72E+00 0.07 0.07 45.49

6 9984 7.1910422E+03 4.79E+00 0.07 0.07 45.46

|---|

6 29952 7.1943588E+03 2.73E+00 0.04 0.07 45.46 0.36 3

|===|

| Time estimate for generating 10000 events: 0d:00h:00m:02s

Each line corresponds to an adaption run in which the phase space is sampled and the grids
and weights of the different channels are adapted. The whole adaption is separated into two
batches of iterations, and only the results of the second batch are actually used to compute
the integral (the first batch is also different in that only the grids are adapted and the weights
are kept fixed). The asterisk denotes the “current best grid”. During event generation, the
last one of those is used to sample the phase space. The default choices for the number of
iterations and samples (“calls”) depend on the process under consideration and are usually
sufficient to achieve a stable integration result. However, there are situations in which more
control is desireable. This can be achieved by the iterations option. In order to see how it
works, modify the example in the following way

integrate (proc) { iterations = 3:1000:"gw", 5:3000:"w", 5:10000 }

(enclosing the statement in curly braces localizes its effect to this specific integrate com-
mand) and observe how the output changes. The flags “g”, “w” or “gw” tells WHIZARD to adapt
the grid, the weight or both of them at each iteration. If no flag is set, both the grid and the
weight will be adjusted. The exception is the final integration pass, in which grid and weights
are frozen, unless specified otherwise.

7

3.1.3 Event generation and analysis

In order to see how event generation and analysis works in WHIZARD modify the previous
example by appending the lines

! Define a histogram for the angular distribution

histogram angular_distribution (-1, 1) {

n_bins = 30

$title = "Angular distribution"

$x_label = "$\cos\theta_{W^-}$"

}

analysis = record angular_distribution (eval cos (Theta) ["W-"])

! Generate 1 fb-1 of events

simulate (proc) {

luminosity = 1 / 1 fbarn

}

! Compile the analysis to a file

compile_analysis

The first statement defines a histogram; the three numbers in parenthesis denote the range
and the bin width. Since we are going to histogram the cosine of the polar angle, our histogram
goes from −1 to 1, and we choose it to have 30 bins. The second statement analysis =

... assigns an analysis expression. This will be executed for every event generated in the
simulation. As this expression introduces a lot of new stuff, lets break it up:

["W-"] defines a “subevent”. A subevent is a set of momenta associated with final state
particles (or combinations of them). The subevent defined above is trivial in that it
consists only of the W− momentum. We could also have built a subevent with two
separate momenta via ["W+":"W-"] (which would have made no sense in this context) or
have added up the momenta of both W bosons by writing [collect["W+":"W-"]]. There
are many ways to manipulate subevents which allow to build quite elaborate observables
that can be used in the context of cuts, scale and analysis expressions. You can find a
list of them in the manual.

eval is a function which takes an expression and evaluates it in the context of a subevent.

Theta is an observable. An observable is a quantity which maps one or two four momenta to a
number. Observables may only appear in the context of an eval function (or in the all

and any functions which will be discussed later). In this example, we have used Theta as
a unary observable, thus calculating the polar angle, but we could also have evaluated it

8

on a pair of subevents (this is different from a single subevent with multiple momenta!) by
doing eval cos (Theta) ["W+","W-"]. In this context, Theta would have evaluated to
the angle enclosed by the two W momenta. You can find a list of all available observables
in the manual.

record takes a number and records it in a histogram. It is in fact a function returning a
logical value, which allows to chain several record calls via the and operator in order
to fill several histograms at once 3 . The result tells whether the observable lies in the
histogram range.

So, in a nutshell, this definition will cause WHIZARD to calculate cos θW− for every event and bin
the values in the previously defined histogram.

The actual simulation is triggered by the simulate command, with which we request the
program to simulate 1 fb−1 of unweighted events. We could also have used n events = 10000

instead of luminosity in order to set the number of generated events directly. Finally, after
performing the simulation, the compile analysis command tells WHIZARD to write the analysis
to disk and create a PDF containing any histograms and plots. The result can be found in
whizard analysis.pdf. Inspect it with a PDF viewer (the virtual machine provides evince

for this purpose). Also, observe how we used LATEX when labelling the histogram. This works
because WHIZARD in fact uses LATEX to generate the graphical analysis, so you can use whatever
TEXish expressions you like.

During simulation, events are written to disk in a WHIZARD-specific format which contains
all available information for each event and can be read back later (see the next self-study). We
will later see how to instruct the program to provide additional event files in different formats.

3.2 More SINDARIN: options and global vs. local variables

Another new thing we encountered in the above SINDARIN snippets are command options. Most
of these are just ordinary variables, the values of which influence the operation of WHIZARD. The
only exception was iterations which does not correspond to a variable as it does not map to
any of the available variable types. In addition, apart from sqrts, all of these variables were set
inside {...} behind commands. The reason is simple: the effect of statements in curly brackets
after commands is localized to the execution of this command—any changes are forgotten after
the command has been executed. For example, we could also have moved $title = ... out
of the brackets and put it before the histogram = This would have worked just as well,
but we would have affected all subsequently defined histograms. Similarly, we could have put
sqrts = ... into curly brackets after integrate, but simulate would have complained about
a missing value for sqrts in this case.

3.3 Self-Study

WHIZARD has a checksumming and caching mechanism which tries to reuse as much information
as it can from previous runs. Rerun the above example and change the setup and parameters

3Obviously, WHIZARD does not short-circuit the and.

9

a bit in order to find out how it works. There are also flags which control the caching; try to
locate them in the show output and see how they work. There are command line options which
do the same thing; check out

$ whizard --help

and try them.

3.4 Event Files

You may have noticed that so far, all data stayed within WHIZARD, and only final results were
printed on screen or ended up in a PDF document. However, for an actual analysis you would
like to see the events themselves.

Actually, WHIZARD did generate an event file. You can recognize it by the extension .evx.
This file is written in a private binary format for internal use, so you can’t make much use
of it outside WHIZARD. If you want to have events in a readable format (by a human or by a
computer), you can generate it. For instance, this simulation command converts the events in
LHE (Les Houches Event) format:

! Generate 1 fb-1 of events and write to file

simulate (proc) {

n_events = 10

$sample = "my_events"

sample_format = lhef

}

Such event files can be fed into external programs. If quarks and gluons are present (later
we’ll see how to produce complete events directly), you may wish to run an external shower
and hadronization program over this file, before the events enter analysis.

3.5 Beam Properties

In our first example, the incoming particles had a fixed, well-defined energy. Since reality is
different, we should mention how to come to a more detailed beam description.

Let us look first at ILC physics. (If you are interested in LHC only, you may skip to
the next section.) In e+e− collisions the initial electrons can radiate a significant fraction of
their initial energy before the collision. This is summarized in the ISR (initial-state radiation)
approximation, which you can turn on by a SINDARIN command, just before integrate.

beams = "e+", "e-" => isr

10

This should slightly modify the final results.
At a Linear Collider, you must also consider the beamstrahlung effect which also reduces

the available energy, before the ISR effect comes into play. This spectrum can become rather
complex, so WHIZARD relies on external code. The simplest approach uses the CIRCE 1 beam-
events generator:

beams = "e+", "e-" => circe1 => isr

Of course, this approach is available only for specific beam setups, for which the beam
parameters are known in some detail.

3.6 Self-Study

Look up the options for ILC beam description in the manual and try to apply them to the
example. For instance, you may polarize the beam particles and watch the cross section change.

4 Hadron Collider: pp initial state

Simple W pair production at a hadron collider is used as example to show how flavor sums
and structure functions work. We will also add an additional jet to the final state and use the
opportunity to show how cuts work.

4.1 Basic setup

In order to change our W pair production example to a proton-proton initial state and add a
convolution with the parton distributions, change the above example such that the first few
lines read

! Define the process

alias pr = u:ubar:d:dbar:g

process proc = pr, pr => "W+", "W-"

! Compile the process into a process library

compile

! Setup the beams

sqrts = 8 TeV

beams = p, p => pdf_builtin

11

What changed?

1. We have to accomodate for the composite intial state at a hadron collider. To this end,
final and initial state particles in WHIZARD can be defined as flavor products of particles,
seperated by colons. In order to avoid repetition, an alias can be assigned to a flavor
product, in this case pr4. In fact, assigning an alias creates a variable of the PDG(...)

type which we already encountered in the variable list.

2. The cross section has to be convoluted with a structure function. This is accomplished
by providing a beam setup via beams = . The equality sign is followed by a pair of
particle identifiers p, p which identify the hadronic initial states as protons, followed by
the declaration of the requested structure function => pdf builtin. In this case we are
using the PDFs built into WHIZARD, the default being CTEQ6L. If WHIZARD was built with
LHAPDF support, => lhapdf would be another choice which we will use later. Options
for the choice of PDF set exist and are documented in the manual, and other structure
functions are available for adding e.g. initial state photon radiation or simulating the
beamstrahlung of a linear collider. Also, structure functions can be chained.

The changes in the resulting program output are not overly exciting, the most noteworthy being
the summary of the structure function setup.

4.2 Adding a jet and defining cuts

We now will add an additional jet to the final state of our W pair production example. The
corresponding leading order matrix element has a divergence when the jet momentum becomes
soft or collinear to the beam axis, and we therefore need a cut to remove it. Modify the first
half of the example to read

! Define the process

alias pr = u:ubar:d:dbar:g

alias j = u:ubar:d:dbar:g

process proc = pr, pr => "W+", "W-", j

! Compile the process into a process library

compile

! Set the process energy

sqrts = 8 TeV

beams = p, p => pdf_builtin

cuts = all Pt > 5 GeV [j]

and all 200 GeV < M < 2 TeV [collect ["W+":"W-":j]]

4 The more fitting identifier p is already taken by the actual proton, represented by its proper MCID.

12

! Integrate the process

integrate (proc)

Apart from the additional jet in the final state, the only other new element is the introduc-
tion of two cuts

pT,jet > 5 GeV, 200 GeV ≤
√
ŝ ≤ 2 TeV

The first cut keeps the jet momentum away from the dangerous soft and collinear regions,
the second cut is for demonstration purposes. Here is a detailed explanation:

• [j] and [collect ["W+":"W-":j]] are subevents. The first consists of the momenta of
all final state particles which match the j alias (only a single momentum in our case),
and the second contains the sum of all final state momenta.

• The all function takes a logical expression, evaluates it for all momenta in a subevent
and concatenates the results with a logical and—a phasespace point passes the cut only
if all momenta in the subevent satisfy the condition. On the other hand the function any

accepts a phasespace point if at least one condition is true.

• The observables Pt and M evaluate to the transverse energy and the invariant mass.

• Both cuts are concatenated with a logical and.

Note that it is possible to define additional cuts which are only applied to the generated
events—those are set up with selection = ... instead of cuts =

The output of the run does not deliver new insights.

4.3 Self-Study

Take a look at the generated angular distribution and compare it the leptonic case—where does
the difference come from? If you like, try to extend the example to include the decay of the
W bosons by using the inclusive matrix element for pp→ e+νeµ

−ν̄µ.

5 The FeynRules Interface

The FeynRules interface is intended to import new physics models formulated in terms of a
Lagrangian in a FeynRules model file into WHIZARD. More precisely, it is actually a WHIZARD

interface included in the FeynRules release from version 1.6.0 onward. It should be used
together with WHIZARD v2.0.3 or higher by default (i. e. compatible with the VM installation).
The usage of the interface is documented in the manuals of both packages: the FeynRules

manual can be found here, but the respective section in the WHIZARD manual is somewhat more
detailed, including particularly a discussion of the limitations which are still present, and which
we will come back to later on in Sec. 5.3.

13

https://feynrules.irmp.ucl.ac.be/attachment/wiki/WikiStart/Manual.pdf

5.1 Getting started with FeynRules

In order to do this part of the tutorial you must have an up-to-date WHIZARD installation on
your own machine. If you have not compiled the package so far, you can obtain a tarball of the
current version here (follow the instructions in Sec. 7 to compile the source). In addition, you
need a working Mathematica installation as well as FeynRules at hand on your own laptop
or desktop machine. If you lack the former, then unfortunately you will have to conclude
this section by reading through the documentation sections of the manuals (if you still like),
or asking your tutorial instructor to demonstrate it on his machine. Otherwise, if necessary
obtain the FeynRules source from here, unpack it into a fresh directory, and finally in a new
Mathematica notebook do

$FeynRulesPath = SetDirectory["<FEYNRULES-DIR>"];

<< FeynRules‘

to load the package.
If you’re already familiar with FeynRules, feel free to go ahead to Sec. 5.2. If not, note

first and foremost that the package was developed to convert the Lagrangian of a given model
into the resulting Feynman rules, so any input to FeynRules will be in the form of a proper
Lagrangian which should fulfill basic sanity requirements such as hermiticity. Try to get a first
idea of the way it works by inspecting the FeynRules version of the standard model in the
respective model file under

<FEYNRULES-DIR>/Models/SM/SM.fr

As you will discover, the file in principle just consists of

• a list of the SM gauge groups and their representations,

• a list of all fields (both unphysical gauge interaction states as well as physical external
states including the diagonalization transformation),

• a list of external model parameters to be set freely by the user,

• a list of internal model parameters which are fixed by the values of the external parameters
and other model constraints,

• and finally a set of Lagrangian pieces of which the SM Lagrangian consists, which are all
added up in the end to form the SM Lagrangian LSM.

Since WHIZARD is a tree-level tool, you can safely ignore anything related to ghosts in the model.
However, in order to solve the tasks in the following hands-on sections, it is fruitful to have
a closer look at the structure of the Lagrangian pieces LYukawa for Sec. 5.2, and LGauge for
Sec. 5.3. Furthermore, FeynRules provides a routine to automatically check the hermiticity of
a Lagrangian: load the model and try it, stating

LoadModel["Models/SM/SM.fr"];

CheckHermiticity[LSM];

14

http://feynrules.irmp.ucl.ac.be/downloads/feynrules-current.tar.gz

in your notebook.
As a first example, export the SM via the WHIZARD interface and employ it with your SM

processes from the previous tutorial sections. This is done by invoking

FeynmanGauge = False;

WriteWOOutput[LSM];

Check the Mathematica messages: the interface calculates the Feynman rules and gives an
account of the number of vertices processed. You should find something like

processed a total of 75 vertices, kept 74 of them and threw

away 1, 1 of which contained ghosts or goldstone bosons.

which tells you that the only discarded vertex is the ghost interaction of QCD which decouples
at tree level, as stated before. Note that the FeynmanGauge flag is mandatory in order to switch
to unitary gauge, because FeynRules defaults to Feynman gauge. You could of course check
consistency by keeping it at True, but you’ll have to communicate this to the interface with an
option to the Write command, WriteWOOutput[LSM, WOGauge -> WOFeynman]. However, as
you’ll see from the messages once you try it, the model becomes less efficient, because now the
goldstone bosons contribute, leading to a whole bunch of extra vertices (general Rξ gauges are
possible as well, cf. the WHIZARD manual). Next, cd to the output directory of the interface,
to be found directly under the FeynRules top-level directory. The name is inferred from the
model name in the .fr file, so in this case it should be fr standard model-WO/. Inside the
directory, do

./configure --prefix=<YOUR-WHIZARD-INSTALLATION>

make install

to compile the code and inject the model into your WHIZARD installation. If everything worked
out, the new model is now available to WHIZARD under the model name fr standard model.
Try your SINDARIN scripts with it, and e. g. compare to the built-in version of the SM to check
whether they agree.

5.2 A simple example: SM with a hadrophobic heavy Z ′

Now let’s move on to something non-trivial: extend the SM by adding one new particle and
one new coupling. For instance, try to implement a new heavy vector boson Z ′ with mass
mZ′ = 500 GeV which couples exclusively to the right-handed τ leptons. To that end, start from
the FeynRules SM again, browsing the model file SM.fr and extending it wherever necessary.
Particularly, you’ll have to add a new piece to the Lagrangian in the end, which contains
the new interaction in correct FeynRules syntax. After making the required statements to
introduce the new field and parameter, peek into the LYukawa piece in order to get an idea how
the solution might look like.

When the model is correctly loaded in your notebook (you’d always start a new Mathematica

kernel before loading new models in order to avoid conflicts with previously loaded models) and

15

the interface call runs through, use WHIZARD to test whether the Z ′ is really there. To that
end, forgetting about realistic notions of technically feasible future collider options in the real
world for the moment, think about the simplest process and energy setup where this should
immediately become obvious in the WHIZARD output. Finally, think about actual e+e− colliders
planned for the near future: What would be the final state and observable of choice to discover
our new particle? What would be the minimum collision energy required? Produce a “smoking
gun” discovery plot where the presence of the Z ′ is immediately visible to the plain eye.

5.3 Including the loop-induced ggH coupling: Effective operators
and known limitations

By the end of this section, we will arrive at the current limitations of the FeynRules interface.
The physics case to be considered is the coupling between gluons and the Higgs particle, which
dominates the Higgs production at hadron colliders although it is purely loop-induced and
hence a priori not present at tree level tools such as WHIZARD. However, the effect can still be
incorporated at tree level using the language of effective operators. These operators are pretty
handy for our purposes, because they can simply be added to the Lagrangian in order to derive
tree level Feynman rules and study the phenomenological implications of loop effects: A superb
application for our FeynRules–WHIZARD machinery!

Technically, in order to find these operators from the underlying theory including higher
orders, one has to integrate out all the heavy particles running only in the loop: in our case,
there is a top quark loop which induces the largest effect because of the huge top Yukawa
coupling (if this topic is new to you: try to draw the Feynman diagram). As you can learn from
more or less any of the more recent LHC physics review articles or textbooks, after electroweak
symmetry breaking the resulting operator in this case reads

HGa
µνG

aµν (1)

with the physical Higgs field H, the QCD field strength Ga
µν and an implicit sum over the

gluon color indices a. Note that this operator is of mass dimension d = 5, and therefore gets
normalized in the Lagrangian by a dimensionful constant prefactor

− αs
8πυ

τ
[
1 + (1− τ) arcsin2

(√
1/τ
)]

, τ ≡ 4m2
t

m2
H

(2)

with the Higgs vev υ in the denominator. Your task is to add this effective operator to the
FeynRules SM, starting again from a plain SM.fr. The way the gauge sector of the SM is
implemented in LGauge might help here.

Once you have FeynRules load the model without errors, try the WHIZARD interface. Inspect
the messages, particularly the account of the processed vertices: You will encounter something
like

WARNING: unidentified vertex of arity 4 (spin structure: SVVV), skipping...

Skipped vertex: H , g , g , g

16

{{H,4},{G,1},{G,2},{G,3}}

Vertices of arity > 4 are not implemented yet, skipping vertex....

Skipped vertex: H , g , g , g , g

{{H,5},{G,1},{G,2},{G,3},{G,4}}

The meaning of this output is twofold: first, the quartic vertex gggH which comes from the non-
abelian part of the field strengths in the operator has obviously been skipped on the grounds
that the respective spin structure SVVV (indicating a scalar plus three vectors) could not be
identified. This is of course not a limitation of the FeynRules side of the interface, but comes
from the limited set of Lorentz structures implemented into the matrix element generator on
the WHIZARD side: Lorentz structures which are not hard-coded in the matrix element generator
cannot be supported within WHIZARD. For a quite similar reason, the interface also drops the
ggggH vertex which is also generated by the operator, simply because there is not a single 5-
point vertex structure supported by WHIZARD so far. At the moment, this is the main bottleneck
of the interface, because particularly in effective theories encoding beyond-the-SM effects one
typically encounters operators of higher mass dimension d > 4 with respective new Lorentz
structures; only a small subset of these has been made available to WHIZARD so far5. However,
note that there has been no warning referring to the ggH 3-point vertex: indeed, this is one of
the few d = 5 interaction structures which are already available. The reason for this selection
is clear: it is one of the key ingredients of a plethora of Higgs-related hadron collider studies,
and of course every serious Monte Carlo tool should incorporate it in one or the other way.
This is also why there is a dedicated model SM Higgs shipped with the WHIZARD package which
conveys all the non-tree level Higgs–vector interactions ggH, γγH and γZH.

In any case, once you injected your model into the WHIZARD installation, you can again
test it with relevant processes such as the total H → gg decay width or Higgs production in
proton–proton collisions.

5.4 Self-study

For a proper phenomenological study, complete your model by also including the γγH coupling.
Of course, the effective operator generating this coupling is the same as the one in Eq. (1) with
the QCD field strength replaced by the QED one, Ga

µν → Aµν . consequently, the prefactor of
the top quark contribution is also the same, with the sole replacement αs → αQED in Eq. (2).
However, the photon couples to electromagnetic charge, so there are more loop contributions
to the vertex in excess of the top loop: can you draw them? In any case, the prefactor of the
additional contributions (to be added to the top quark piece) reads

αQED

48πυ

[
2 + 3τ ′ + 3τ ′ (2− τ ′) arcsin2

(√
1/τ ′

)]
, τ ′ ≡ 4m2

W

m2
H

(3)

with the W boson mass mW . Once you got it working, produce a plot of the relevant LHC
observable, and also compare your model to the one included in the package, SM Higgs.

5 You can find an exhaustive list of all Lorentz structures supported by WHIZARD in the manual. Although
there is the plan to support general Lorentz structures at a vertex in the matrix element generator in future
versions, no dependable release date can be quoted yet.

17

6 The tt̄ threshold at future lepton colliders

One of the most intriguing physics cases for the various layouts of future high energy e+e− col-
liders is a precise measurement of the tt̄ production cross section close to the threshold energy,√
s ∼ 2mt. In this kinematic region, large effects from the nonrelativistic QCD potential bind-

ing the tops to each other will be visible in the total cross section, allowing for a very precise
determination of mt and αs by a threshold scan. From one of the imminent release versions
onwards (> 2.2.2), WHIZARD will provide a dedicated model SM tt threshold to incorporate
and study this effect up to the next-to-leading log (NLL) order in the nonrelativistic QCD ex-
pansion. For the moment, if you want to play around with the model right now, there is a
dedicated pre-release version of the WHIZARD package which contains the model in its current
development state6. You can obtain it here (∼ 23 MB) or from one of the USB sticks going
around during the tutorial. Follow the instructions in Sec. 7 to compile the source.

6.1 Leading order and phase space

Before actually going on to the new model with the threshold enhancement, let’s start by
examining the tt̄ production threshold at e+e− colliders at leading order (i. e. keep model = SM

in your SINDARIN script for the moment)7. The great advantage of such a lepton collider is that
you can precisely adjust the partonic center-of-mass energy

√
s of the process (in principle; of

course there are technical details and complications which we will happily ignore for the time
being). This means that you can tune your machine to scan

√
s over the expected threshold

region. For a first stab at the process, use WHIZARD to produce such a scan over the tt̄ threshold.
Start with the most naive process, namely the 2→ 2 on-shell production e+ee− → tt̄. Produce
a plot to inspect the shape of the total cross section σ(

√
s). The crucial SINDARIN snippets

you’ll need for this are

process eett = "e+", "e-" => t, tbar ! the 2->2 process

...

plot thresh (x_min = Emin x_max = Emax) ! initialize plot

scan sqrts = (Emin => Emax /+ Estep) { ! parameter scan syntax

beams = e1, E1

integrate (eett)

record thresh (sqrts, integral(eett)) ! record the plot points

}

compile_analysis

6 Note that the effective parametrization of resonant effects in the threshold region is already fully functional
and validated up to NLL; what is still missing is a properly matched transition from the threshold region into
the tt̄ continuum production region.

7 Skip this section if you’re already familiar with the topic itself and only want to see how WHIZARD performs.

18

http://whizard.hepforge.org/mc4bsm-2014/whizard-2.1.1_tt_threshold.tar.gz

where it is remains for you to define the interval (Emin, Emax) as well as the step size for the
scan: around what sqrts value would you expect the tt̄ threshold? Which parameter of the SM

model decides whether you are “close” to the threshold, or “far away”? Once you settled for a
scan setup and ran WHIZARD, what do you observe in the resulting plot?

Of course, you will never observe actual on-shell tops in a detector, they are just an in-
termediate resonance which you might be able to reconstruct from the decay products. The
naive approach to including this is to augment our 2→ 2 process by the dominating top decay
process t→ bW . However, this will still keep the tops on-shell, which turns out to be an invalid
approximation particularly in the threshold region: you’ll have to find a more sophisticated for-
mulation of the process, which includes the tops only as intermediate resonances, not as external
particles. What is the corresponding 2 → 4 process of interest? Which cuts are appropriate
to enhance the signal region (i. e. the kinematic region where the top resonances dominate
the matrix element), and how large are the effects from non-resonant irreducible backgrounds
(i. e. those pieces of the full matrix element which do not contain the top resonances)? Produce
a similar plot to the one you already have from the 2 → 2 process, and compare the shapes
of σ(

√
s). What is the qualitative difference between these two plots, and where does it come

from?

6.2 Engaging the model: SM tt threshold

Now let’s switch on the new model SM tt threshold. But before running it, have a look at
the model parameters: the respective snippet of the model file reads8

parameter m1S = 172.0 # t-quark m1S mass

parameter wtop = 1.5 # t-quark width

parameter nloop = 1 # vNRQCD order (0/1: LL/NLL)

parameter sh = 1.0 # hard scale: mu_h = m1S * sh

parameter sf = 1.0 # soft scale: mu_s = m1s * sf * v*(sqrts)

...

external mtpole # depends on nloop and sqrts

Comparing to the SM, note that there is no top mass parameter mtop any more: if you
browse the respective literature, you will learn that in the special case of the top quark there
are some intricacies in defining its “mass” in the first place, and strictly speaking a value for mt

is worthless without the definition it refers to. However, there is some implicit consent among
Monte Carlo developers and experimental physicists concerning the “standard” definition: it is
simply the square root of the real part of the constant which is plugged into the top propagator,
hence the illustrative term “Monte Carlo mass” (termed mtop in all WHIZARD models except for

8 Again, if you are familiar with these parameters, feel free to go on to the next paragraph following the
explanation of the parameters.

19

this, while the imaginary part is then fixed by the top width wtop). At leading order it coincides
with the so-called pole mass, which is defined as the value of the squared top 4-momentum p2t
where the matrix element has its maximum. Of course, there is a respective parameter mtpole
also in this model, but it is tagged external which means that you’re not free to vary it by
hand. In short, the reason is that there is an intrinsic lower bound on the theoretical uncertainty
of its definition, which is set by the QCD confinement scale ΛQCD ∼ 200 MeV. However, the
experimental precision at a lepton collider is expected to be much smaller, of order ∼ 50 MeV or
even better, so the theoretical calculation should rely on an input parameter which is at least as
well defined as that. A very useful quantity for this is the 1S mass, which encodes the binding
energy of the tt̄ system in the QCD potential at threshold (the lowest state of what would be
a “top meson” if it didn’t decay so fast, hence the term 1S from meson spectroscopy). The
corresponding model parameter is m1S, from which the program then dynamically computes
mtpole at runtime, depending on the value of sqrts and the non-relativistic QCD (NRQCD)
loop order nloop. The two remaining parameters are sh and sf, allowing you to set the
hard renormalization scale µh resp. the soft scale µs which enter the threshold resummation
calculation. Varying them gives you an estimate of the theoretical uncertainty entering the
simulation.

After this lengthy introduction, employ the model to repeat the threshold scan over the
2→ 4 process from Sec. 6.1, including the NRQCD threshold corrections this time. As already
mentioned, one of the drawbacks of the current model implementation is that it still lacks a
sensible matching to the continuum production region, which means that you should not go
too far above the threshold region in order to avoid running into unphysical effects: to be on
the safe side, don’t go more than 3–4 top widths above the threshold with

√
s. Compare the

plot once more to the previous ones and look at the qualitative and quantitative changes of the
cross section shape as a function of

√
s.

6.3 Self-study

If you still have some time left, try to estimate the theoretical uncertainty by simultaneously
varying the parameters sh and sf (typically this is done in the range 0.5 · · · 2, but there is
nothing fundamentally physical behind this choice; it’s just pretty common). If you manage to
do this both for LL and NLL precision, compare them to each other: would you say that the
uncertainty estimate is reasonable?

7 Building your own WHIZARD installation

For several sections of this tutorial, you will need to have your own compiled installation of one
or the other WHIZARD version on your machine. Here is how to achieve this—always supposed
your system fulfills all necessary prerequisites; but don’t bother for the moment, just try it.
You’ll learn from the console output when/if there are problems. If you don’t manage to build
the source on your system, you can always ask one of the tutorial instructors to help you. As
a last resort, consider compiling the package inside the VM where everything is well prepared

20

to serve all WHIZARD needs.
There are several versions packed into tarballs which you can download using the links

provided in the respective sections of the tutorial. Otherwise, you can ask one of the tutorial
instructors to give you a USB stick with the tarballs. Once you obtained the correct tarball for
the exercise that interests you, do9

tar -xvf <path_to_tarball>

mkdir build inst

cd build

<path_to_unpacked_source>/configure --prefix=$PWD/../inst

make install

. ../inst/bin/whizard-setup.sh

After that, the default whizard command in your $PATH will the one you just compiled, so
you’re ready to start with the exercise.

8 Setting up a shared folder between the VM and your

host system

If you have not done so already, execute the initial.sh script inside the VM:

. ~/scripts/initial.sh

This will install the VBoxGuestAdditions needed to share a folder with your host system. Then
you need to create the folder to be shared somewhere in your host system, say

mkdir ~/vmshare

Now, from inside the VM go to “Devices→Shared Folders Settings...” and add a new shared
folder definition. In the following pop-up window, choose the folder you just created on your
host system as “Folder Path” and share as “Folder Name”. Finally, execute the mount-shared.sh
script:

. ~/scripts/mount-shared.sh

The shared folder of your host system should now be mounted inside the VM at ~/host.

References

[1] W. Kilian, T. Ohl and J. Reuter, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233].

9 Note that the following procedure will overwrite any previously compiled WHIZARD compilation under the
given installation target specified by the --prefix flag; be sure to avoid any unwanted chaos. Specifically, don’t
forget to set the --prefix flag when compiling inside the VM, otherwise you’ll overwrite the existing executable
located in /usr/local/bin.

21

	How to use this tutorial
	First steps
	Invoking the program
	Talking to the WHIZARD: SINDARIN and ``Hello, World!''
	Variables
	Other SINDARIN constructs
	Self-Study

	A first stab at physics: e+eâ‹™W+Wâ‹™
	Process definition and integration
	Process definition and code generation
	Phase space parameterization and integration
	Event generation and analysis

	More SINDARIN: options and global vs. local variables
	Self-Study
	Event Files
	Beam Properties
	Self-Study

	Hadron Collider: pp initial state
	Basic setup
	Adding a jet and defining cuts
	Self-Study

	The FeynRules Interface
	Getting started with FeynRules
	A simple example: SM with a hadrophobic heavy Z
	Including the loop-induced ggH coupling: Effective operators and known limitations
	Self-study

	The t threshold at future lepton colliders
	Leading order and phase space
	Engaging the model: SM_tt_threshold
	Self-study

	Building your own WHIZARD installation
	Setting up a shared folder between the VM and your host system

